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FIFTEEN PROBLEMS CONCERNING THE 

REPRESENTATIONAL THEORY OF MEASUREMENT 

1. INTRODUCTION 

The type of theory of measurement we discuss is the representational one 
that is treated in great detail in the three volume treatise Foundations of 
~easurement. '  We attempt to make the present treatment self-contained, 
including definitions of major concepts, but these volumes may be 
consulted for greater detail. 

Our aim is to discuss two classes of, probably difficult, issues that 
need clarification. The first type, covered in Section 3, has to do with 
principled arguments to justify the representational perspective and pos- 
sible modifications of it to deal with error and with limiting properties 
of passing from finite, through denumerable, to continuum represen- 
tations. These issues are, at least partially, philosophical in character. 
The second type, covered in Sections 5 and 6, is more technical and 
focuses primarily on the issues of relating the useful, but abstract, ideas 
(to be defined below) of scale type, Archimedeaness, and Dedekind 
completeness to observable properties of qualitative structures. 

Many of the problems we describe are primarily conceptual and their 
resolution probably requires something of an intellectual break-through. 
Once that is achieved, however, some may well prove to be technically 
easy to solve. Others that we cite are well defined within existing 
mathematical ideas, and some of these appear to be difficult. 

2. THE REPRESENTATIONAL THEORY OF MEASUREMENT 

2.1. Historical Background 

Mathematicians and scientists, among them Helmholtz (1887), Holder 
(1901) and von Neumann (in von Neumann and Morgenstern, 1947), 
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clearly had the idea of axiomatizing ordered qualitative structures as 
possible models of empirical attributes and in the latter two cases of 
establishing, as mathematical theorems, the existence and uniqueness of 
numerical representations. The power and generality of this approach, 
however, was not widely appreciated by empirical scientists or philoso- 
phers of science during the first half of the 20th century, as evidenced 
by the discussions of measurement in, for example, Bridgman (1922, 
1931), Campbell (1920, 1928), Cohen and Nagel (1934), and Ellis 
(1966). More than anyone else, Suppes brought to the attention of 
non-mathematicians this axiomatic style of studying the measurement 
of attributes. Particularly important were Scott and Suppes (1958), Sup- 
pes (1951), and Suppes and Zinnes (1 963). The latter was especially 
influential among mathematical psychologists, and it was the forerunner 
of the Foundations of Measurement. 

For over 30 years, representation and uniqueness theorems2 were the 
mode of research. New ordered mathematical structures that appeared 
to have relevance to the measurement of certain attributes were isolated, 
and two theorems were established: the existence of a representation 
into or onto some prescribed numerical structure, and the uniqueness 
of that representation in the sense of formulating the class of trans- 
formations relating equally good representations into or onto the same 
numerical structure. This has come to be called the Representational 
Theory of Measurement, abbreviated RTM. 

Many key concepts and methods of RTM, as it is now formulated, had 
analogues in 19th century geometry, particularly in (i) the assignment of 
coordinate systems to qualitative geometries (e.g., Hilbert, 1899), (ii) the 
idea that invariants of structure preserving mappings had geometrical 
significance (Klein, 1893), and (iii) the idea that the geometric structure 
of space is the same at each point, i.e., that space is homogeneous 
(Helmholtz, 1868; Lie, 1886). 

2.2. The Underlying Principles 

The formal part of RTM can be reduced to five main ideas: 

1. A qualitative situation is specijied by a (usually ordered) relational 
structure X consisting of a domain X ,  jinitely many relations on 
X andjirlitely many special elements of X .  
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These relations, subsets, and elements are called the primitives of A'. 
Measurement axioms are then stated in terms of primitives of X .  These 
axioms are intended to be true statements about X for some empirical 
identification and are intended to capture important empirical properties 
of X ,  usually ones that prove useful in constructing measurements of 
its domain, X. 

2. The representational theory requires that the primitives of S can 
be given an empirical identification. 

In particular, if R is an n-ary primitive relation on X, then it is 
required that the truth or falsity of R ( x l , .  . . , x,), for any particular 
choice of the n-tuples xi, be empirically decidable. 

3. As much as possible, measurement axioms, stated in terms of the 
empirically identijied primitives, should be empirically testable. 

Next, a numerically-based, representing structure n/ is selected, and 
for each structure X that satisfies the measurement axioms, the set S ( X )  
of homomorphisms of X into n/ is considered. 

4. Measurement of S is said to take place ifand only ifthe following 
two theorems can be shown: 

(i) (Existence Theorem). S ( X )  is non-empty for each X that 
satisfies the measurement axioms. 

(ii) (Uniqueness Theorem). An explicit description is provided 
about how the elements of S ( X )  relate to one another: In 
practice this description usually consists of specifjling a group 
offiinctions G such that for each 4 in S ( X )  

S ( X )  = {g * 4 : g is in G) ,  

where * denotesfunction composition. 

A concept of meaningfulness similar to that proposed by Stevens 
(1946) is used for judging the empirical significance of quantitative 
statements: an n-ary relation S on the domain of the numerically based 
structure n/ is said to be meaningful about X if and only if for all 
xl, . . . ,  xnandal lq5and$inS(X),  

Following Suppes and Zinnes (1963), 
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5. RTM identijies empirical signijicance with meaningfulness. 

The concept of meaningfulness with respect to S ( X )  is easily extend- 
ed to numerical statements involving measurements of elements of the 
domain: meaningful statements are those whose truth value is unaffect- 
ed by the particular representation in S ( X )  used to measure X .  

It should be noted that the concepts of empirical significance and 
meaningfulness as embodied in RTM are independent of truth; both 
true and false statements can be meaningful and empirically significant. 

Although the following two features are not part of the formal the- 
ory, they hold in many important measurement situations with infinite 
domains: 

6.  Using the measurement axioms, sequences of equal spaced ele- 
ments - standard sequences - are constructed. 

These standard sequences are then used to establish constructively 
the set of homomorphisms of X  into N .  To construct a specific one, one 

1 proceeds as follows: a first standard sequence s l ,  . . . , si , . . . is chosen 
to produce the first level of approximation 4' of a homomorphism 4. 

I For each element n: in X, find the 72 such that s;, 5 z < s, ,+~,  where 5 
denotes the primitive of X  that orders X .  Set 

A second level of approximation is carried out by choosing the sequence 
s:, . . . , s:, . . . , where for each positive integer i, sZi = s i .  The second 
approximation to 4 is obtained by setting 

where k is such that s i  5 z < s;+, . Continuing in this way, a sequence 
of approximations 4, is constructed, and for many measurement axiom 
systems it can be shown that as m + oo, the limit of $,,, exists and is 
the desired homomorphism 4 of X  into N.  

Beginning with a different standard sequence will usually yield a 
different homomorphism. 

The accuracy of measurement, in practice, is controlled by how many 
terms in this approximation are used. 

The ancient geometer Eudoxes used standard sequences in much the 
same way as in RTM. They also played a critical role in the approaches 
taken by Helmholtz (1887) and Holder (1901). Later Luce and Tukey 
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(1964) used related kinds of standard sequences to obtain their repre- 
sentation and uniqueness results for additive conjoint measurement." 
Krantz (1964) and, in a more useful way, Holman (1971) recognized 
that the standard sequence approach of Luce and Tukey closely related 
to the algebraic structure described by Holder for physical measurement 
- an ~ r c h i m e d e a n , ~  totally ordered group. Basically, Krantz and Hol- 
man defined an operation on one component that captured completely 
the trade-off structure between the components. Under the axioms, the 
operation was shown to be associative and so the problem was reduced 
to an application of Holder's theory. 

Most of FM1 is devoted to recasting various measurement situations, 
often using the ideas inherent in Krantz and Holman's approach, so that 
Archimedean ordered groups (or large semigroup portions of them) 
come into play. It has been remarked, with some justice, that the 
theory of measurement is largely an application of Holder's theorem, 
i.e., of standard sequences in the guise of Archimedean ordered groups. 
Moreover, as we shall see in Section 4.2, this continues to be the case 
even for non-additive structures. 

7. The representational theory offers an abstract theory of the kinds 
of well-behaved scales that one encounters in science. 

This theory is based on a concept of homogeneity that abstractly is 
much like the geometric one mentioned above and provides qualita- 
tive and empirical criteria for empirical structures to be homogeneous. 
(Issues involving homogeneity are discussed more fully in Sections 4 
and 5.) 

Until the 1980s, the major emphasis of RTM has been on produc- 
ing existence and uniqueness theorems for various kinds of empirical 
situations. Scott and Suppes (1 958) remarked: 

A primary aim of measurement is to provide a means of convenient computation. 
Practical control or prediction of empirical phenomena requires that unified, widely 
applicable methods of analyzing the important relationships between the phenomena be 
developed. Imbedding the discovered relations in various numerical relational systems 
is the most important such unifying method that has yet been found (pp. 116-1 17). 
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3. PROBLEMS CONCERNING THE FORMULATION OF THE 
REPRESENTATION THEORY 

Although most critics accept that RTM, via its axiomatizations of impor- 
tant empirical situations and the various representation and uniqueness 
theorems, is a major contribution to our understanding of measurement 
in science, they criticize it as a theory of measurement. The criticisms 
are of four major types: (1) questions about the definition of measure- 
ment in terms of scales of homomorphisms, (2) objections to the lack of 
a theory of error for RTM, (3) concerns about exactly what invariance 
concepts have to do with the concept of meaningfulness, and (4) doubts 
about the heavy use of infinite structures and continuum mathematics 
when, after all, the universe is, according to contemporary physics, 
composed of only finitely many particles. A number of these concerns 
are expressed by Kyburg (1984) and in papers in Savage and Ehrlich 
(1 992). 

3.1. Homomorphism Dejinition of Measurement 

The criticisms of the homomorphism definition of measurement are of 
two types: those arguing that the definition is too narrow in the sense that 
it does not account for certain kinds of measurement; and those arguing 
that it is too broad in that it permits too many kinds of measurement. The 
former usually contain elements of the following criticism of Adams 
(1966): 
It seems to me Lhat in characlerizing measurement as the assignment of numbers to 
objects according to rule, the proponents of the representational theory have fastened 
on something which is undoubtedly of great importance in modern science, but which 
is not by any means an essential feature of measurement. What is important is that 
the real numbers provide a very sophisticated and convenient conceptual framework, 
which can be employed in describing the results of making measurements: but, what 
can be conveniently described with numbers can be less conveniently described in 
other ways, and these alternative descriptions no less 'give the measure' of a thing 
than do the numerical descriptions. . . . Note, too, that the ancienl Greeks did not have 
our concepts of rational, much less real numbers, yet it seems absurd to say that they 
could not measure because they did no1 assign numbers to objects. In sum, I would 
say that the employment of numbers in describing the results of measurement is not 
essentiaIly different from their employment in other numerical descriptions, and that this 
employment is neither a necessary nor a sufficient condition for making or describing 
measurements (pp. 129-130). 

Even granting the assumption that measurement necessarily involves assigning num- 
bers, it seems to me to be far from true that in making these assignments it is always the 
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case that mathematical operations and relations are made to correspond to or represent 
empirical relations and operations. . . . The situation is worse with most of the widely 
used measures in the behavioral sciences, like 1.Q.s and aptitude test scores. It may 
be claimed, of course, that these are not really measurements at all, but to justify this 
[claim], some argument would have to be given, unless the theory of representational 
measurement is not to degenerate into a mere definition (1.Q.s are not measurements 
because they do not establish numerical representations of empirical operations and 
relations) (p. 130). 

Niederke (1987, 1992) and others criticize RTM as being too broad. 
He notes that requiring a structure to be numerically representable into 
structures based on the real numbers places little restriction on the 
structure beyond cardinality and even that has not been justified. This 
kind of restriction is too liberal because 

. . . it does not involve any concept of measurement whatsoever. Indeed measurement 
theorists would hardly be prepared to accept [it] as a sufficient criterion for a structure 
to be called representable in terms of fundamental measurement. What seems to be 
lacking here is an analysis of what it should mean that a 'number' expresses an ideal 
value of measurement (NiederCe, 1992, p. 245). 

The above criticisms of RTM suggest the following problem: 

PROBLEM 1. Justify in a philosophically principled fashion RTM (or 
a large part of it) as a general theory of measurement without severely 
restricting its positive uses.5 

A few comments are in order. First, theories of ability measure- 
ment alluded to by Adams, although based on quantitative data, are not 
in principle ruled out by RTM. Empirical structures can be based on 
numerical information just as long as those numbers arise from empiri- 
cal means - which is the case for ability measurement. What is lacking 
from the RTM perspective are axiomatic theories for the various kinds 
of ability measurement. We do not see any in principle impediments to 
the development of such axiomatic theories, although in practice none 
has been devised and it does not appear to be easy to do so. 

Second, either directly or indirectly standard sequences are used to 
establish scales in almost all6 of the major results of FM. Thus, since the 
process of measurement through standard sequences is usually taken as 
paradigmatic of 'measurement processes', almost all of the represen- 
tational results of FM are valid not only from the RTM viewpoint but 
from a number of different perspectives about what measurement is. 
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Third, some attempts at solving Problem 1 already exist, including 
Michell(1990) and Niederee (1987, 1992). The present authors are not 
yet persuaded that their attempts are useful beyond the additive cases. 
In particular, as we shall see in Sections 4 and 5,  the greatest progress to 
date in understanding non-additive structures involves mapping certain 
general types of structures into a particular subgroup of their automor- 
phisms, showing that this subgroup is Archimedean ordered, and then 
using Holder's theorem to map these into the multiplicative positive 
real numbers. Because we do not know, in general, direct structural 
descriptions of individual automorphisms, it is not obvious that the pro- 
cedure proposed by NiederCe for constructing a suitable representation 
will capture the known results. Considerably more work is needed 
to establish how these approaches lead to these general measurement 
representations. 

Fourth, much of FM is concerned with issues that are not limited 
to measurement per se, but are closely related to measurement. The 
most prominent of these is the testing of scientific theories through the 
use of RTM. An example of this is subjective expected utility (SEU) 
theory, which holds that a subject's preference ordering over lotteries 
is explainable as if the person is trying to maximize a numerical SEU, 
which is computed in the obvious way using a simultaneously construct- 
ed subjective probability over the family of uncertain events and a utility 
over the set of consequences. One way to test this scientific theory is 
to formulate it as a quantitative model, gather data, and test the model 
using standard statistical methods to determine the degree to which the 
model accounts for most of the variance in the data. This approach often 
involves approximate construction of standard sequences. A different 
way is to formulate the scientific theory as a qualitative, axiomatic 
measurement model that through RTM is equivalent to the quantita- 
tive SEU, and then test the axioms' qualitative theory through direct 
empirical observations of samples of the stimuli. 

Three additional examples of theories that are closely related to 
measurement issues are the axioms for distributive triples, which can 
be used to construct the space of physical quantities (see Section 6.1); 
a variety of psychophysical models involving more than one sensory 
attribute (one of which is described in Section 6.2); and a theory of 
certainty equivalents to uncertain monetary gambles (Section 6.3). 
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3.2. Error in Measurement Theory 

The second class of criticisms concern error and how it should be treated 
vis-d-vis measurement models. While 'error' considerations for mea- 
surement give rise to many different kinds of problems, we cite three 
treatments of error that are intimately connected with key concepts of 
RTM. The first is based on the idea that probabilities underlie the obser- 
vations that are made. Although some progress has been made on this 
general approach (Falmagne, 1979,1980; Falmagne and Iverson, 1979; 
Iverson and Falmagne, 1985; Michell, 1986), little effective use has yet 
been made of it to test measurement axiomatizations in detail. 

PROBLEM 2. SpeciJjt a probabilistic version of measurement theory 
and the related statistical methods for evaluating whether or not a data 
set supports or refiltes specijc measurement axioms. 

One approach, taken by a number of people, is to assume the data base 
consists of probabilities of binary or more complex choices, with the 
major question being the conditions on these probabilities that corre- 
spond to the existence of an underlying random variable representation 
in which the largest value observed determines the choice. A survey of 
such work is found in Chapter 17 of FM2. One of the most interesting 
recent contributions is Heyer and NiederCe (1992) who study when a 
probabilistic structure, e.g., of choices, can be considered to arise from 
a probability distribution over a family of conventional measurement 
structures that all satisfy the same axioms. 

From a fundamental measurement perspective, this approach is not 
fully satisfactory because it assumes as primitive a numerical structure 
of probabilities and thus places the description of randomness at a 
numerical, rather than qualitative, level. One would like to formulate 
the qualitative primitives so as simultaneously to capture at a qualitative 
level both the structural and the random qualities of the situation. 

The following is a reasonably concrete instance of what we have in 
mind. Consider the typical extensive situation where both judgments of 
order can be made and entities can be concatenated to form new ones 
exhibiting the same attribute. One would like axioms that lead to a 
random variable representation that specifies the random variables with 
respect both to their structural relations with each other and to the nature 
of their distributions. For example, if gi denotes concatenation within 
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the extensive structure, it would be interesting to arrive at qualitative 
axioms sufficient to guarantee that the representing family can be taken 
to be the gamma family. Mathematically, the problem undoubtedly 
entails finding a functional equation characterization of the gamma 
family which, to our knowledge, has never been given. More generally, 
one would expect the distribution of the random variable associated to 
x @ y to be the convolution of the distributions of those associated to x 
and to y. With such a representation, the expected value would behave 
as a traditional measurement representation, in particular 

Thus, we state the problem as: 

PROBLEM 3. Extend the qualitative primitives of RTM in such a way 
that the objects of the domain are represented by random variables 
(instead of by numbers = constant random variables). 

The idea that randomness can be captured qualitatively within a relation- 
al structure is not totally idle because, in a certain sense, that is exactly 
what has been done in theories of subjective utility theory (Savage, 
1954, and much subsequent literature). In such theories, choices among 
uncertain alternatives are used to infer a random variable - utility - and 
probability distributions over families of events underlying the uncer- 
tain alternatives. The problem is to do it in contexts more analogous to 
extensive and conjoint measurement, not preference among uncertain 
alternatives. 

Progress on Problem 3 has been made for the special case of finite, 
ordinal empirical structures, i.e., there is just one primitive, an order- 
ing relation (Cohen and Falmagne, 1990). Suppes and Zanotti (1992) 
have followed a different tack in attempting to axiomatize qualitative 
moment information and to use that to characterize a random variable 
representation. 

Alternative approaches to random variable ideas of error may be 
appropriate for extensions of RTM. In particular, applications of Bool- 
ean-valued and other multi-valued logics and fuzzy logics seem poten- 
tially interesting. 
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PROBLEM 4. Extend the RTM approach to include axioms formulated 
in terms of multi-valued logics. 

Efforts in this direction should be carried out so as to produce either new 
kinds of results - not just translations of known random variable repre- 
sentation results - or new insights into measurement through concepts 
not available in the standard approaches to random variables. Some 
progress has been made by Heyer and NiederCe (1989), but much more 
research on the topic is needed.7 

The meaningfulness part of RTM has not received as much attention as 
the existence and uniqueness parts and so it is less fully developed. In 
particular, as with the definition of a measurement scale, the criterion 
for meaningfulness invoked in RTM has not been adequately justified. 
Although FM3 describes methods for linking qualitative correlates to 
meaningful quantitative relations, no justification is provided for why 
these qualitative correlates are indeed empirical. 

Narens (1988) showed that these qualitative correlates are definable 
in terms of the primitives through a very powerful higher-order logical 
language that includes individual constant symbols for purely mathe- 
matical entities. Because empirical definitions require only much weak- 
er logical languages, Narens' results establish that the qualitative corre- 
lates of non-meaningful qualitative relations cannot be defined empir- 
ically in terms of the primitives of the empirical structure. Thus, the 
correlates of non-meaningful relations are non-empirical with respect 
to the primitives. These results can also be used to show that there 
exist qualitative correlates of meaningful quantitative relations that are 
necessarily non-empirical. The conclusion to be drawn from this is that 
the RTM concept of meaningfulness gives a necessary but not sufficient 
condition for empirical significance. It should be remarked that most 
of the applications of the meaningfulness concept, such as dimensional 
analysis (Bridgman, 1922, 193 1 ; Luce, 1971, 1978), use it only as a 
necessary condition for empirical significance, i.e., use it as a condition 
for eliminating from consideration non-meaningful relationships. 
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PROBLEM 5. Amend RTMS concept of mearlirlgfultless so that it cap- 
tures in a more appropriate fashion the concept of empirical signijicance 
(with respect to the qualitative structure). Obviously, a major part of 
this problem is giving a coherentformulatiorl of 'empirical signijicance '. 

It may well be the case that the solutions to Problems 1 and 5 are 
intimately connected. 

3.4. Continuum Representations 

Although there are some results on finite measurement structures, some 
of which are quite useful in applications, and on denumerable structures, 
the general consensus is that the strongest, most elegant results are 
about structures that map onto a continuum. Examples were cited in 
Section 2.1 and additional ones are given below. 

The results about structures on finite sets are of two distinct types. 
One in essence axiomatizes a finite standard sequence, which leads 
in the usual way to an integer representation and a simple uniqueness 
theorem. The other establishes a set of inequalities that must be satisfied 
and the existence of a numerical representation is established but we 
usually are unable to give a compact and useful characterization of its 
uniqueness. 

Assuming a universe of finitely many particles, which many believe 
is implied by current physical knowledge, why does one ever need 
to look at denumerable let alone continuum results; yet it is these, 
especially the latter, that seem to be of greatest import for scientific 
measurement. The problem divides naturally into two phases: from 
finite to denumerable and from denumerable to continuous. One can 
envisage some sort of theory concerning a nesting of finite systems 
that leads, asymptotically, to a denumerable structure from which the 
finite systems can be thought of as samples. But it is well known that 
the step from denumerable systems, even the rational numbers, to the 
continuum is delicate. For example, the results on scale type to be 
described in Section 4 become vastly more complex in the denumerable 
case (Cameron, 1989). Considerable research exists on the Dedekind 
completions8 of certain classes of structures (see Narens, 1985; Ch. 19 
of FM3), but this has not yet been given an adequate justification for 
using continuum models. 
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PROBLEM 6. Provide a principled account of why it is scientiJically 
useful to replace jinite structures by continuum ones. In particulal; 
it is important to make clear just what limiting processes give rise to 
Dedekind completeness or Archimedearless in the continuum, and also 
what gives rise to the properties of homogeneity andJnite uniqueness 
that are discussed next. 

This problem may well be closed related to Problems 1 and 5. 

4. CLASSIFICATION OF STRUCTURES BY SCALE TYPE 

Coexisting with the representational approach has been another theme 
which, beginning in 1981, began to flourish as a major alternative. 
During the earlier debates over the existence of psychological measures 
of any sort, as distinct from physical ones, Stevens (1946, 1951) placed 
great emphasis on the uniqueness of representations. His list of scale 
types - ordinal, interval, ratio, and absolute - is famous, and most 
empirical examples fell within it. But not all. For example, Narens and 
Luce (1976) showed that one could simply drop the associativity axiom 
from classical extensive measurement and still show the existence of 
an (inherently non-additive) numerical representation. But they failed 
to provide a satisfactory description of its uniqueness beyond the fact 
that specifying a single point rendered it unique. The reason for their 
failure did not become apparent until the work of Cohen and Narens 
(1979) in which the uniqueness problem was first treated as essentially 
equivalent to understanding the group of symmetries (= automorphisms) 
of the structure, i.e., isomorphisms of the structure onto itself. They 
showed that for non-associative concatenation structures the group of 
automorphisms is surprisingly simple: an Archimedean ordered group. 
Holder (1 901) had completely characterized such structures by showing 
that each is isomorphic to some subgroup of the multiplicative positive 
real numbers (MPRN). Ratio scales onto the positive reals are those 
cases where the automorphism group is isomorphic to the entire MPRN 
group. 

4.1. Homogeneity, Finite Uniqueness, and Scale Type 

The results just described were a precursor to Narens' (198la, b) pro- 
posed classification of the automorphism groups of ordered relational 
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structures in terms of two major properties, called the degree of homo- 
geneity and degree of uniqueness. The automorphism group is said to be 
M-point homogeneous if for any two ordered sequences of M distinct 
elements, there exists an automorphism that takes the first sequence into 
the second. That group is said to be N-point unique if whenever two 
automorphisms agree at N distinct points, they are necessarily identical. 
For an M-point homogeneous structure with more than M points, it is 
easy to see that M 5 min N .  The scale type of the structure is the 
ordered pair of numbers (max M, min N ) .  Ratio scale structures are of 
type (1, 1); interval scales ones, of type (2, 2). 

The question posed by Narens was: what scale types are possible? 
A number of general, but still partial, answers are known for (simply) 
ordered relational structures in which the primitive relations are of finite 
order. 

4.2. A Recipe for Constructing Numerical Representations 

The major results rest on properties of a subset of the automorphisms 
called translations: the identity map together with all automorphisms 
that do not have any fixed points. Three major questions about them 
are: 

(i) Do the translations form a mathematical group? The only real prob- 
lem is in showing that they are closed under function composition 
which is equivalent to showing that they are I-point unique. 

(ii) Under the ordering of the translations naturally induced from the 
order of the given s t ruc t~re ,~  are the translations ~rchimedean?" 

(iii) Are the translations I-point homogeneous? 

Once these facts are established, one can construct a numerical repre- 
sentation in which the translations appear as multiplication by constants 
(i.e., the similarity group) as follows: using homogeneity, map the 
structure isomorphically onto the group of translations; using Holder's 
theorem, map the translation group, and so the structure, into MPRN 
(Alper, 1987; Luce, 1986, 1987). That leaves unanswered the question 
about the rest of the automorphisms. A simple answer is known when 
the underlying ordered relational structure is order dense:'' the auto- 
morphisms are a subgroup of the power group x + r x S ,  which means 
that min N 5 2 (see FM3, Theorem 20.7, Corollary 2). 



REPRESENTATIONAL THEORY OF MEASUREMENT 233 

4.3. Some Structures with Translations Satisfying the Recipe 

So a key problem is to try to understand what structural properties 
give rise to these three properties of translations. So far, no one has 
derived any necessary structural properties from these three properties 
of translations. All that is known are certain sufficient conditions. We 
cite two partial results. 

First, if the ordered relational structure is Dedekind complete and 
order dense, then (i) implies (ii) (see Theorem 20.6, FM3). Second, 
and this is the most general result known at present, if the ordered rela- 
tional structure can be mapped onto the real numbers, is homogeneous 
(max M 2 I), and is finitely unique (min N < m), then the three con- 
ditions are satisfied and the possible scale types are (1, l), (1,2) and (2, 
2), with the first being a ratio scale, the third an interval scale, and the 
(1, 2) case falling between the two. An example of the (1, 2) case is 
the group of real transformations x t k n s  + s,  where k > 0 is fixed, 
n ranges over all integers, and s ranges over all real numbers. Narens 
(1981b) proved the part of this result for which max M = min N, and 
Alper (1987), using a very different approach, proved the result without 
that restriction. Alper's methods first made very clear the importance of 
the three properties of the translations. Surprisingly, the most difficult 
property to establish is that the translations form a group. 

4.4. Structural Equivalents to the Key Properties of Translations 

Given the results just mentioned, it is clear that we still have much to 
learn about the conditions under which the translations form a homoge- 
neous, Archimedean-ordered group. 

PROBLEM 7. What structural properties are implied by each of the 
translation properties - group, Archimedean, and homogeneity - sep- 
arately or together? As none are currently known, a simpler problem 
may be: what structural properties are sufJicient for each of the three 
properties of translations, either separately or jointly? Ideally, one 
would like to find distinct structural features that correspond separately 
to each property, although that may well prove infeasible. 

For any homogeneous and finitely-unique ordered structure having a 
binary, monotonic operation, not necessarily on a continuum, one can 
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prove directly that min N < 2 (Luce and Narens, 1985). Little is 
known in general about the automorphism groups in this case, except, 
as was noted above, when the operation is also positive, solvable, and 
Archimedean, one can prove, without assuming homogeneity, that the 
automorphism group is Archimedean ordered. We do not know of 
comparable results in the remaining homogeneous case in which the 
operation is necessarily idempotent.I2 In particular, we do not know 
of conditions that result in the translations forming an Archimedean 
ordered group. 

PROBLEM 8. What algebraic properties on homogeneous, Jinitely 
unique relational structures are 'just sufJicientJ to prove min N < 2? 
The two known results should be special cases. When min N 5 2 can 
be proved, what can be said about the set of translations? 

(It strikes us as unlikely that a reasonable set of necessary and sufficient 
conditions will be found, and so the criteria for 'just sufficient' should 
be considered to be flexible.) 

5. SCALE TYPE IN SPECIFIC STRUCTURAL CONTEXTS 

5.1. Combining Scale Type and Structural Conditions 

Once the results on scale types began to be discovered, the possibility of 
applying them to specific measurement problems began to be explored. 
Basically the strategy has been to combine the homogeneity and finite 
uniqueness conditions with more specific structural assumptions and to 
characterize in greater detail the classes of structures that can arise. One 
example of this is found in Luce and Narens (1985) in which homo- 
geneous, finitely unique concatenation structures on the continuum are 
described quite fully. Closely related is the fact that for the class of 
concatenation structures that are positive, solvable, Archimedean, and 
Dedekind complete, if the ordered automorphism group is order dense, 
then it is also homogeneous. A third example is continuous semiorders; 
they have a (1, m) group of automorphisms with a subgroup of transla- 
tions that is homogeneous and can be ordered so that it is Archimedean. 
We do not know of other cases where the numerical representation of 
a structural axiomatization has been studied by proving that its transla- 
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tions form a homogeneous, Archimedean ordered group. 

PROBLEM 9. Explore the possibility of using the recipe described 
above to construct numerical representations of particular ordered 
structures that do not fall under the scope of the theorem of Alper 
and Narens mentioned in Section 4.3. 

5.2. Stri4ctures That Are Not Finitely Unique 

A structure may fail either homogeneity or finite uniqueness; the two 
failures are very different. 

Ordinally scalable structures are not finitely unique; indeed, it takes 
at least an order dense subset of the domain to fix an automorphism. 
Moreover, they are also M-point homogeneous for each finite M .  We 
say they are of scale type (co, oo). Roberts and Rosenbaum (1985) 
established that for an ordered relational structure that is M-point homo- 
geneous, if M does not exceed the cardinality of the domain and if the 
order of each defining relation of the structure is not greater than M ,  
then the automorphism group of that structure is identical to that of just 
the ordered domain. Thus, if these conditions are met and the ordered 
domain is isomorphic to the ordered real numbers, then the structure is 
of scale type (oo, oo). Droste (1987) has characterized in a convenient 
form the automorphism groups of such structures. 

This leaves the ( M ,  co) cases, about which relatively little is known. 
Although it has been shown that continuous semiorders are examples of 
( 1 ,  co) structures (Narens, 1994), we know of no explicit measurement 
structures with 1 < M < oo. Thus, many questions remain unan- 
swered. 

PROBLEM 10. What can be said about structures and their automor- 
phism groups of scalar type ( M ,  oo) with 1 < M < oo? 

5.3. Structures That Are Finitely Unique But Not Homogeneous 

For general finitely unique, non-homogeneous structures on the contin- 
uum, Alper (1987) provided a description of the possible automorphism 
groups, but so far his classification has not been used successfully to 
describe the corresponding structures. Luce (1992a) followed a far 



236 R. DUNCAN LUCE AND LOUIS NARENS 

more restricted tack, but one that seems highly relevant to some mea- 
surement applications. He defined a point in a structure to be singular 
if it remains fixed (or invariant) under every automorphism of the struc- 
ture. The concept of a translation is generalized to be either the identity 
or any automorphism whose only fixed points are singular ones. Clearly, 
if the structure 1s finitely unique, then it has only finitely many singular 
points and so it is meaningful to speak of such a structure as being trans- 
lational homogeneous between adjacent singular points. For a class of 
structures that he calls generalized concatenation structures which have 
a monotonic" n-ary operation, he gave a fairly complete description of 
the possibilities when the structure is both finitely unique and translation 
homogeneous between adjacent singular points. What makes matters 
simple is that such structures can have at most three singular points: 
a maximum, a minimum, and an interior one. An example of such a 
structure is the multiplicative, positive real numbers augmented by 0 
and co with translations x  + x T ,  where I .  > 0. The singular points are 
the two extreme ones, 0 and co, and one interior one, 1. 

If, in addition, the group of translations commute,14 then an interior 
singular point, call it e, acts like a generalized zero15 in the follow- 
ing sense: if F  denotes the operation, then F ( e ,  . . . , el x i ,  e ,  . . . , e )  = 
& ( x i ) ,  where on either side of e the function Qi agrees with a translation 
of the structure. Moreover, if any singular point is a generalized zero, 
then any other singular point, el, acts like an infinity in the sense that 
if e' is an argument of the function, then the value of F  is e'. Finally, 
for structures on a continuum, Alper's results can be used to derive a 
numerical representation in which translations on each side of the inte- 
rior singularity are multiplication by a constant, the two constants being 
simply related by a power relation. As we shall see in Section 6.3, these 
and related results have been applied effectively in devising a theory of 
certainty equivalents for gambles (Luce, 1992b). 

PROBLEM 11. What structures are there that are useful for applied 
measurement, beyond those based on a general operation, for which 
homogeneity fails at selected points? And what structures, although 
failing homogeneity more globally, still have a fairly rich automor- 
phism group, such as x  + Icnx, where k > 0 is abed constant and n 
ranges over the integers? 
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Important non-homogeneous structures lie outside this framework. 
The most notable examples are qualitative probability structures. They 
are non-homogeneous not only because of their extreme points - the 
null and universal events - but because two events that are qualitatively 
equally probable need not exhibit the same relational patterns to other 
events. Also, the only automorphisms of such a structure are ones, like 
the identity, that take an event into an equally probable one. Obviously, 
the previous tacks we have taken in structures that are more or less 
homogeneous are completely useless in such contexts. Yet, clearly the 
probability case exhibits a great deal of regularity. 

PROBLEM 12. What kind of useful classtjication can be given for 
structures that exhibit a great deal of regularity, such as is seen in 
probability structures, but that only have automorphisms a for which 
a(x) is equally probable to x ? 

6. APPLICATIONS OF RESULTS ABOUT SCALE TYPES 

6.1. Product-of-Powers Compatibility in Bounded Cases 

One feature of physical measurement is the existence of two distinct 
kinds of attributes: those having an internal structure, like mass, time, 
length, and charge, and those having a trade-off structure between com- 
ponents, like energy, momentum, density, etc. A major feature of clas- 
sical physical measures is that the conjoint ones can be represented as 
products of powers of the extensive ones. For example, kinetic energy is 
given by m u 2  and density by m/V. This aspect of the representation 
is reflected in the fact that the units of the conjoint measures are always 
products of powers of the units of extensive measures. How this arises 
from measurement considerations is discussed in Ch. 10 of FM1 and 
again, much more generally, in parts of Chs. 20 and 22 of FM3. 

The most general result to date involves two major properties: a 
qualitative concept of how a structure on one component of a solvable 
conjoint structure distributesI6 in the latter structure (Definition 20.6, 
FM3), and the assumption that the component structure is such that its 
translations form a homogeneous Archimedean ordered group. These 
two properties force the conjoint structure to have a multiplicative rep- 
resentation involving a power of the representation of the component 
attribute (Theorem 20.7, FM3). 
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This model of interrelated measures covers much of classical mea- 
surement and makes clear exactly which generalization of extensive 
structures - basically any ratio scale structure - can be added to the 
physical structure without disrupting the product-of-powers feature. 
Unfortunately, it fails to cover everything of importance. The most 
notable exception is relativistic velocity, which is bounded from above 
by the speed of light. 

As is well known, physicists have elected to keep the multiplicative 
conjoint relation s = vt among distance, velocity, and time, and to use 
a non-additive and bounded representation of the associative concate- 
nation of velocities, namely, u $ v = ( u  + z i ) / ( l  + uv/c2) ,  where c 
denotes the maximum velocity, that of light. (In principle, they could 
have adopted an additive representation of di, but at the very consider- 
able expense of foregoing the simple relation s = vt).  It is important to 
realize that $ is not really an operation on the velocity component of the 
defining conjoint structure. The reason is that 11 and u di v are velocities 
in a single frame of reference whereas v is in a different frame, one in 
which the distances and times are modified relative to the first frame. 
Thus, from the perspective of relativistic measurement, it is inappropri- 
ate to think of $ as an operation on the conjoint structure. But even 
if one does, it fails to be distributive in the conjoint structure. Within 
the context of a binary operation, distribution comes to: if ut = u't' 
and vt = v't', then ( Z L  $ v) t  = (u' $ v')t l .  It is easy to verify that this 
fails. More deeply, when distribution holds, the automorphism struc- 
tures of the conjoint and component structures agree in the sense that 
every translation of the component structure is that component's con- 
tribution to an automorphism of the conjoint structure, and conversely. 
This is not true in the case of the velocity component. Yet, at the same 
time multiplication by a positive constant r ,  which is an automorphism 
of the conjoint structure, simply maps one velocity representation into 
another, with c becoming rc. This lack of a connection between the 
automorphism groups of the two structures and yet their tight product 
of powers representation is not understood in terms of measurement 
theory. 

This problem is important not only to complete our understanding 
of how relativistic velocity ties into the classical measures, but also to 
allow the introduction of other bounded measures. The most obvious 
of these is probability which, in computing expectations, has a product 
relation with other measures, as in (subjective) expected utility theory 
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(Savage, 1954; von Neumann and Morgenstern, 1947). Aside from the 
boundedness, the two cases are very different. Other examples may 
arise in the behavioral sciences where measures of subjective intensity 
are almost surely best modelled as bounded from above. 

PROBLEM 13. What links the bounded component structures of a 
conjoint structure and the conjoint structure itself so as, again, to lead 
to a product-of-powers representation? Possibly one should initially 
assume the components are homogeneous between bounds, as in the 
velocity case, but ultimately that restriction must be removed to deal 
with the probability case. 

6.2. Compatibility of Psychological and Physical Theory 

Matching is a psychological procedure in which a subject 'matches' a 
stimulus in one intensity domain, such as brightness, to a given stimulus 
in another intensity domain, such as loudness. Formally, there are two 
physical structures A' and S, with domains X and S ,  that each have ratio 
scale representations; classically, they are simply extensive structures 
but the theory applies to any with a ratio scale representation. The psy- 
chological data may be summarized as follows: for each z  in X, there is 
some s  in S such that, according to the subject, s  matches z ,  which we 
symbolize as z M s .  In this situation, there are two physical relational 
structures and a purely psychological connecting relation M  between 
them. Empirically, to a first approximation at least, the matching rela- 
tion can be described as a power relation between the two physical 
ratio-scale measures. The question is to what does this correspond. 

Luce (1990) suggested a principle of compatibility between the two 
domains that may be described as follows. To each translation T of A', 
there is a corresponding translation u,  of S such that for all .r E X and 
all s  E S :  

.z:Ms if and only if ~ ( z ) M u , ( s ) .  

This is easily shown to be equivalent to a power relation between the 
ratio scale representations, and a number of other relationships are 
explored. The multiplicative constant of the relation has, of course, 
dimensions that depend upon the exponent involved. 

Clearly, the application just described is highly special to a particu- 
lar situation, but the general idea of asking which psychological laws 
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relating physical variables are in fact compatible with the translation 
structure of these variables is a far more general principle. The fail- 
ure of such compatibility means non-physical variables are required to 
describe the phenomenon. 

PROBLEM 14. 1s there any deep scientific or philosophical grounding 
for the supposition that psychological laws should be compatible with 
the automorphism structures of the physical variables that they relate? 
Are there other examples in which application of this principle can be 
illustrated? And are there examples where it clearly is violated? 

6.3. Applications of Results about Structures with Singular Points 

To date just one new application (beyond relativistic velocity) has been 
made in the measurement literature of the results about structures with 
general operations that are finitely unique, have singular points, and are 
translation homogeneous between adjacent singular points (see Sec- 
tion 5.3). It concerns certainty equivalents to uncertain monetary 
alternatives.17 For a fixed event partition, a certainty equivalent can 
be viewed as a monotonic function of money arguments - the pay-offs 
associated with the several subevents - into an amount of money that is 
indifferent to the uncertain alternative. A sharp distinction is maintained 
between gains and losses, making 0 an interior singular point. Assum- 
ing the structure is homogeneous on either side of 0 and finitely unique, 
which has been typical of utility theories, and defining utility to be the 
isomorphism that represents the translations as multiplication by pos- 
itive constants yields a linear weighted average utility representation. 
The fact that 0 must be a generalized zero is very important in construct- 
ing the weighting functions of rank- and sign-dependent character. We 
do not go into any of the details, for the only point in mentioning it here 
is as evidence that such general results do have applications. 

PROBLEM 15. Given that we gain some results about structures with 
various forms of non-homogeneity (see Problems 11 and 12) including 
ones with interior singularpoints, are there applications that up to now 
have been overlooked because previously we did not know how to deal 
with such situations? 
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7. CONCLUSIONS 

The representational theory of measurement, despite its positive contri- 
butions, has been subjected to attack on a number of fronts. One basic 
issue is how to formulate clearly what one means by measurement in 
such a way that the representing structure is derived from the axioms 
of the qualitative structure. Of considerable interest are structures that 
do not map into the real number system, but rather into families of 
random variables or into structures based on multi-valued logics (Prob- 
lems 1-5). Further, even in the case of numerical representations, one 
can wonder why anything as idealized as the continuum is relevant to 
science (Problem 6). The remaining problems are all considerably less 
philosophical and involve somewhat complex issues in the theory of 
scale types. We know a lot more about scale type than we did 12 years 
ago, but much about structures remains shrouded; hard work and new 
ideas are probably needed to gain a deeper understanding. Some of 
these problems are listed as 7-1 5. 
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NOTES 

' Krantz, Luce, Suppes, and Tversky (1971) will be referred to as FM1; Suppes, Krantz, 
Luce, and Tversky (1989) as FM2; and Luce, Krantz, Suppes, and Tversky (1990) as 
FM3. 

Some of the subtleties involved in formulating uniqueness results are dealt with by 
Roberts and Franke (1 976). 

A conjoint structure is a weak ordering of a Cartesian product; it is additive if it admits 
an additive representation over its components. 
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Archimedeaness simply means that any bounded standard sequence is finite. Put 
another way, no positive element is infinitesimal relative to another element of the 
structure. In practice, the impact of Archimedeaness is to permit homomorphisms into 
the real numbers rather than ordered extensions of the real numbers such as the non- 
standard reals. 
' Among the positive uses we include the testing of mathematically formulated theories 
relating several variables, although we recognize that others may not want to take such 
a consideration into account in linding a solution to this problem. Subjective expected 
utility, mentioned later, is one example; three more are given in Section 6. 
' The primary exceptions are purely ordinal cases including variants such as interval 
orders and semiorders. 
' See Heyer and Mausfeld (1987) for a discussion of some conceptual problems con- 
nected with Boolean-valued approaches. 

A structure is Dedekind complete if every subset of elements that is bounded from 
above has a least upper bound in the domain. A structure that can be embedded in a 
Dedekind complete one of the same algebraic form is said to have a Dedekind comple- 
tion. 

For automorphisms a ,  P, a 5' P i f  and only if for every element x  of X,  a ( x )  5 P ( x ) .  
"' For any two translations one of which is greater than the identity, finitely many appli- 
cations of the positive one will exceed the other. 
I '  If x < y ,  there exists z in X such that x  < z < y. 
l 2  Homogeneity implies, for all elements x ,  either weak positivity, x o x > x ,  idem- 
potence, x  o x  N x, or weak negativity, x  o x  < x. The first and third are formally 
identical if 2 is replaced by 5. 
l 3  The definition of monotonic is the usual one except that some care is needed in dealing 
with extreme points, if such exist. 
l 4  This is true if they can be represented in the multiplicative real numbers. The assump- 
tion may be redundant, but Luce failed to derive it from the other assumptions. 
15 The term 'zero' is appropriate when one thinks of homomorphisms to the real num- 
bers where 0 is the interior singular point and the translations are x  + r x .  
I' Let C = ( A  x X, 2)  be the conjoint structure with A a relational structure on A 
whose order is that induced from C. For fixed x ,  y E X ,  let a be the function defined 
by all solutions to ( a ,  x )  N ( a ( a ) ,  y ) .  Then. A distributes in C if every such a is an 
automorphism of A. 
l 7  This is closely related to the prospect theory of Kahneman and Tversky (1979) and to 
such extensions of it as Luce and Fishburn (1991) and Tversky and Kahneman (1992). 
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